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INTRODUCTION

The purposc of this study is to apply a formulation of shapc optimization to a numcrical sim-
ulation of the body located in an incompressible viscous flow. The state cquation for this
problem can be expressed by an incompressible Navier Stokes equation. The shape optimiza-
tion is based on the optimal control theory. In an optimal control theory, a control valuc which
makes phenomenon an optimal state can be obtained. In this theory, a performance function
should be introduced. When the performance function is minimized, it is assumed that the
state is optimized, and then the control value is obtained. In this study, the optimal state is
defined by the fluid forces subjected to the body. The shape optimization can be formulated
to find surface coordinates of the body to minimize the performance function. In case of opti-
mal control problem with constraint condition, the performance function should be minimized
satisfying the statc cquation. This problem can be transformed into the minimization problem
without constraint condition by the Lagrangian multiplier or the adjoint equations using ad-
Jjoint variables corresponding to state variables of the state equations. A mixed interpolation
by a triangular bubble element is employed to the finite element approximation. The bubble
function is stabilized by the artificial diffusion which is chosen cqual to the stabilized paramcter
of the SUPG scheme by a stabilized control parameter. The Sakawa Shindo method which is
an interative procedure saving the computation memory and has a slow convergency so that
the surface coordinates of the body does not move suddenly to avoid the distortion of the finite
clement mesh is applicd for minimizing the performance function. For a numecrical cxample, a
drag minimization problem of a body which initial shape is a circular cylinder is introduced.

STATE EQUATION

Let €2 denote the spatial domain representing z; the coordinates associated with {2 at the time
I€(ty,ts]. Let I' denote the boundary of 2, supposing that an incompressible viscous fluid flow
occupics 2 x I. The state cquation of the flow can be written by the following incompressible
Navier Stokes equation in the non dimensional form:

iz.- + U;Uj, 5 +pi— I/( Ui, j + Ujs ),j 0 in Ox I, (1)

Ui = 0 in Qx1I (2)

where, u; and p arc the velocity and pressure, v is the inverse of Reynolds number (v = 1/Re),
respectively.



Consider a typical problem described in Fig.1, in which a solid body B with the boundary '
is laid in an external flow. Suppose that the boundary conditions, for this problem is given as:

u; = (U, 0) on TyxlI, 3)

ti  {—poy; +v(ui; +uji)}n; =0 on TpxI, 4
t1=0, up=0 on IgxlI, (5)

u; =0 on TIpxl, (6)

w;(%, t) = ug (with u; = 0) in Q. (7)

where U is constant inflow velocity, t; is traction vector, n; is unit vector of outward normal
for I, respectively.
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Fig.1 Analytical domain and boundary condition

The fluid forces acting on the body B arc denoted by F; The fluid force F, arc obtained by
integrating the traction ¢;, which is written as follows,

Fi=— [ tdr. (8)
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FORMULATION FOR SHAPE OPTIMIZATION

In case of optimal control problem with constraint conditions, the performance function should
be minimized satisfying the state equations. This problem can be transformed into a minimiza-
tion problem without constraint conditions by the Lagrangian multipliers or adjoint equations
using adjoint variablcs to state variables of the state cquations.

Performance function

In this paper, a fluid force control problem is considered. The fluid foree is dircetly used in the
performance function. The performance function J is defined by the square sum of the residual
between fluid forces and objective values of fluid forces,

1 - A A
J=> /I{ql (R — B)? + g F — By)%)dt, (9)

where, g; is the weighting parameter, l:", is the objective value of fluid force which is a pre-asigned
value. The state equations eq. (1) and (2) are the constraint conditions of the performance



function J. The Lagrange multipliers for the eq. (1) and (2) are defined as the adjoint velocity
u} and adjoint pressure p*. The extended performance function J* can be obtained as follows:

1 . B r N \2 5 0
J = 3/1{%([‘1 F1) + g (Fy — Fy)*}dt

— / / ul*{u, -+ ‘U‘,'U‘I")' + pz 1% ( 'Um { ‘U‘j',’ ),]}dQ (“ - / / [)"U.('J‘(HZ (11‘
JIJQ ’ JIJIQ

Adjoint Equation
To minimize the performance function J, the gradient of the performance function J with re-
spect to geometrical surface coordinates z§ should be introduced. The optimal control problem
with the constraint condition of ¢q. (1) and (2) rcsults in solving a stationary condition of the
extended performance function J* instead of the original performance function J. The necessary
condition for the stationary condition is that the first variation of the extended performance
function J* vanishes.
0J* =0.

Taking an integration by parts for each necessary term, the first variation of the performance
function 6J yiclds as follows:

o + Ju*g"—,f—
Ou. Op * Qul oz;

- - /1 /ﬂ Bua{ iy + st — gl + g — vl + uly) }dQdE + /; /Q 5pus dQdt

+/I/r 6tiu;‘d1"dt+/1/r86t2u;dl"dt
U

+f [ ot (i — (R - Fyarde+ [ [ ot fu; — ga(F — F)}drde

—// 6u,-s,-df'dt—// 6u151dI‘dt—// 0x; 55 u;dl dt
I JI'p IJIg IJT'g

—/ﬂ ou; (zi, ty) ui(zi, tp)dQ
0,

0J* = du;

) +5p j‘+5$,;

where s; is,
8; = {uu; —p* o6y + viu; i+ u;f‘,-)}nj‘

Following relation is used,

6’(1,,' = 'u'i,jéxj .

Setting each term equal to zero to satisfy the optimal condition, following equations can be
obtaincd,

% * * * * * _ 3
—0 i u; —uiup; +ps —v(u; +ui;); =0 in Qx U,



w;=0 i QxI, (16)

u; =0 on TIyxlI, (17)

$;, =0 on TpxlI, (18)

81=0, u3=0 on TgxI, (19)

u=@F - F),@F -F) o Texl, (20)
w(ty))=0 in Q. (21)

When the state and adjoint equation are solved, the gradient of the performance function
related to the surface coordinates of the body can be obtained as follows,

Bx. f / s;u;dr dt.

MINIMIZATION

The Sakawa—Shindo method is applied for the minimization. In this method a modified perfor-
mance function K which a penalty term is added to the performance function is introduced.

: 1 L
K=704 o [ [ WOzl - o0ydrat,
2JrJrg

where ¢ is the iteration number for minimization, z; is the surface coordinates of the body.
Let z; be the optimal solution, the derivative of the K respect to z; is vanished. The renewed
surfacc coordinates of the body is calculated by

Jr Jrp 85 usdl di
Jrdt

W(‘)zg”'l) _ W(‘)w,(‘) _

The following algorithm can be introduced.
1. Select initial surface coordinates x§°’ in
2. Solve ul”, p© by egs. (1), (2) in Q from ¢, to ¢

«0)

3. Solve ;" , p*® by egs. (15) , (16) in Q from t;toto

4. Compute a:,(‘) by eq. (24)

(%]

Solve uf‘) , P by egs. (1), (2) inQ from ¢ tots

Compute J®

e

If { (J@) - (J D)} < 0 then WO = 2.0W® go to 4.
clsc W® = 0.9W® go to 8.

8. IF |z — (‘ 1)I < € then stop
else solve u}, p*® by eqs. (15) (16) in Q from ty toty
go to 4.



CONCLUSION

A numerical example of the shape optimization of a circular cylinder located in an incompress-
ible viscous flow is analyzed. Fig.2 and Fig.3 show the analytical domain and finite element
mesh, respectively. The total number of nodes and elements are 1636 and 3116. In this numer-
ical example, the diffusion dominant flow which Reynolds number was 10.0 is analyzed. Fig.4
shows the initial and the computed optimal shape of the objective body.
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Fig.2 Anmnalytical domain
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Fig.4 Optimal and initial shape

Fig.3 Finite element mesh



