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Figure 2. Comparison of the coefficients X, . (0) " =0.0693 and (O) y" = 0.4503; (O) Pauchon and
Banerjee’.
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[image: image2.png]where Fj, is the interfacial drag force. For a bubbly flow with uniform bubble size distribution, this
force is given by6‘: ' ‘
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where R, is the equivalent bubble radius, Cj, is the drag coefficient. Ishii and Mishima® report a
detailed analysis on the two-phase drag coefficient.

RESULTS AND DISCUSSION

The following results are obtained with the eccentric cell model. The first result is:
m = &'Cpyyg (&g)v, (13)

where v, is the relative velocity vector and Cpz(s,) defined as added mass coefficient, which in

this eccentric cell model is not constant anymore but a function of the eccentricity and the void
fraction gradient. This result is important because includes an additional contribution to the usual
term governed by the gradient of the void fraction. When the gradient is positive the coefficient is
greater than &, /2, while for negative gradient the coefficient is less £, /2. If 7(4,p)=b the result

is reduced to ¢£,/2, which corresponds to the concentric cell model. Pauchon and Smereka’ also
obtain this result.

The intrinsic average of the dyadic product of velocity deviations is given by
( vl vl )I = K(sg)gg Vf (14)

where v, is the modulus of the relative velocity and K is second-order tensor given by

K a® (1, 1
K(g)=—C —— | -B+—d,d 15
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where K is also a typical second-order tensor, defined by Wallis® for a concentric cell model, the
vector d; and the tensor B are functions of the eccentric radius.

In Figure 2 a comparison for the coefficient K for two eccentric conditions and for the Pauchon and
Banerjee’s work® is shown. The behaviour reported in’ is strongly dependent on the void fraction,
while the presently worked eccentric cell model is a smoother function of void fraction for

¥ (=y/b)=0.0693 at K,, =~ 0.3. For 7" =0.4503 a maximum close to &, ~ 0.343 and a further
decrease of K,, were observed.

CONCLUSIONS

Using the eccentric cell model, first and second order effects for the void fraction were apparent,
changing the structure of the non-linear differential equation.





[image: image3.png]In order to obtain the averaging velocity potential the eccentric cell model is applied. The process
under consideration is 111ustrated in Figure 1, where the phase sphere has a radius a and the cell is a
sphere of radius b, thus (a/b)’ is equal to the volume fraction on the phase sphere. The sphere is
located at a relative distance » with respect to the centroid. When a cell model is used to
approximate a volume average, it is assumed that many spheres exist within the averaging volume.

Cells are defined about each individual sphere. Hydrodynamic interactions were assumed to be
negligible for sparse dispersions.
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Figure 1. Eccentric cell model

Under the foregoing considerations the averaging velocity potential is given by

27 © r(6.) »
<¢>’=% OJ' 6[ j¢(r,€)r2drsin0dﬂd¢ (10)

where V; = 4/31t(b3 - a3) and (8, ¢) is the eccentric radius, which depends on the bubble position
within the cell (Figure 1).

Interfacial drag forces are obtamed from the integral over the interfacial area for the viscous stress.
This term is defined by Lahey’ as:

1
nlg-Tg,dA‘-—'-‘ '——V“ ng, 'TgI dAEgg FD (11)
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[image: image4.png]where k and m (k # m) denotes either the gas (k = g) or the liquid (% = /) phase; ( ¥ represents an
averaging operator; o, V,, P, , are the local variables in the k-phase representing density, velocity

vector and pressure, respectively, g is the acceleration of gravity vector and & is the void fraction in
the k-phase.

The difference between the interfacial average pressure and the intrinsic average pressure is given

by2
(AP k) =P )im — (P 1) (3)
The interfacial force per unit volume applied on phase  is defined by:
Mkm"'""‘“' Inkmp,md/l+—— J‘nkm TkmdA (4)
A

where ny, is the unit normal vector at the interface pointing out of k-phase, the spatial deviations of
the pressure is given by

D=0 —(P) ~(Appm) | ()
and the viscous stress tensor for incompressible flow is given by

Tyn = 24 (V9, + 9V | ©)
In order to solve the equations (1) andﬁ (2), it is imperative to develop appropriate closure

relationships for the terms (A p,, ), (¥, ¥, Y and M., . This is the purpose of the present work
considering an eccentric cell model. '

MODEL DEVELOPED

According with Espinosa® the first integral of the equation (4) can be rewritten as:

7 jplgnlg =-pV (&',(V,V,)) —P1€1V€1 (31 v )]
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where # represents the spatial deviations of the potential velocity given by Gray*

F=p-(s) )
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A one-dimensional, time-dependent, isothermal, incompressible, Newtonian fluid, two-phase
volume-averaging model was developed to study momentum interaction effects in vertical ducts with
bubble flow regime. For the evaluation of the averaged description, potential inviscid flow around
bubbles was considered in order to get closure relationships, using an éccentric cell model approach.

INTRODUCTION

Consider the two-fluid balance equations of two-phase flow. The system is composed of a
continuous liquid phase (water) and a disperse gas phase (air) made up of a swarm of spherical
bubbles. The system is taken as isothermal and the vertical duct with a diameter much greater than
the size of the individual bubbles. Both phases are considered locally incompressible and without
interfacial mass transfer. Interfacial momentum transfer is allowed and a constant surface tension is
given. The mixture of gas and liquid is assumed to be far away from the solid walls of the duct, in
such a way that wall effects can be neglected.

The threel-dimensional averaged transport equations for adiabatic air-water, are given by Espinosa
and Soria :

Averaged mass balance
accu;nulation convection
—;—ti + &, VAV +(v )eVe, =0 (1)
Average momentum balance
M"’J‘i‘i convection pressure  grqvity
a ( k) ’ \v/ ( k k) j \v/ k‘
Pk‘ét‘ Vi) )+ AV 6V (Vi) |+ 6 V(p)" + 6. o8
2
= (Apm)VE —pY ‘(6'1: <vkvk>k)+ M,,, @
difference })f the dispevrsion interfacial
averages of the Sforce

pressure




