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Although there has been quite a lot research on the development of one{dimensional, mathe-

matical models for the analysis of single{component �laments and jets under both isothermal

and non{isothermal conditions at low Reynolds numbers, hollow, compound �bers (Figure 1)

such as those used in reinforced materials and modern optical �bers (which are manufactured

in coextrusion processes) have received very little attention despite the fact that the combina-

tion of two or more di�erent materials with di�erent properties may result in hollow, composite

�bers which highly desireable properties. For example, in the manufacture of traditional optical

�bers, the core is surrounded by a sheath of cladding material, whereas hollow, compound �bers

that enclose an air ring may be used as almost ideal tunable �lters. These �bers are usually

manufactured by means of �ber spinning processes which consist of the steady extrusion of

hot melts through a series of small holes in a plate (spinnerets) into ambient air; the resulting

extrudates are simultaneously extended and wound up on a rapidly rotating drum (godet).

Freezing takes place between the spinneret and the godet, and, usually, large extensions rates,

rapid cooling, and high speeds are involved.

One of the main issues in the manufacture of hollow, compound �bers is the stability of the

spinning process and, in particular, a nonlinear phenomenon that is called draw resonance. The

objective of this paper is several-fold. First, an asymptotic analysis of axisymmetric, hollow,

compound, isothermal, Newtonian jets of large aspect ratio at low Reynolds numbers is per-

formed by means of perturbation techniques based on the smallness of the aspect ratio. Second,

the leading-order equations of the asymptotic analysis are solved numerically to determine the

e�ects of the compression and expansion of the gases enclosed by the inner, annular jet on the

time-dependent 
uid dynamics of hollow, compound jets when subjected to time-dependent

velocities at the upstream and/or downstream boundaries.

The inner and outer annular jets correspond toR1(t; x) � r � R(t; x) and R(t; x) � r � R2(t; x)

with R1(t; x) 6= 0. The 
uid dynamics of isothermal, axisymmetric, hollow, compound jets are

Figure 1: Schematic of a hollow, compound, annular liquid jet.



governed by the conservation equations of mass and linear momentum, and kinematic and

dynamic boundary conditions at the jet's interfaces, R1(t; x), R(t; x) and R2(t; x), where R

corresponds to the interface between the inner and outer annular jets, t is time and x and r

are the axial and radial coordinates, respectively. The kinematic conditions establish that the

hollow, compound jet's interfaces are material surfaces where the shear stress is continuous, and

the jump in normal stresses across the interfaces is balanced by surface tension. Since there are

three interfaces, there are three surface tensions, i.e, �i; i = 1; 2, is the surface tension at the

inner jet's inner surface and at the outer jet's outer surface, respectively, and � is the surface

tension at the interface between the inner and outer, annular jets. The gases that surround

the outer jet and those enclosed by the inner one have been assumed to be dynamically passive

since, in general, they have smaller density and dynamic viscosity than those of liquids, and their

pressures are denoted by pe(t) and pi(t), respectively. This implies that the gases surrounding

the liquid may not introduce strong velocity variations on each cross section of the jet, although

they may a�ect its dynamics. Moreover, for viscous 
uids, (v2�v1) �n = (v2�v1) �t = 0 where

n and t denote the unit vectors normal and tangent, respectively, to r = R(t; x), v denotes

the velocity vector, and the subscripts 1 and 2 refer to the inner and outer, respectively,

annular jets. In this paper, a long wavelength approximation is used to reduce the time-

dependent, two-dimensional governing equations to a more manageable (and easier to solve)

one{dimensional set of equations by means of asymptotic methods based on the slenderness

ratio, at low Reynolds numbers. These methods are based on the nondimensionalization of the

radial and axial coordinates, time, axial and radial velocity components, and pressure, i.e., r,

x, t, u, v and p, respectively, with respect to R0, �, �=u0, u0, v0 and �u0=�, respectively, where

R0 and � denote a characteristic radius and a characteristic wave length in the axial direction,

respectively, u0 is a characteristic (constant) axial velocity component, v0 = R0u0=�, and � is

a reference dynamic viscosity which here is taken as �2. Substitution of these nondimensional

variables into the governing equations and boundary conditions results in a system of equations

which contain � = R0=�, Re2 = �2u0R0=�2, Fr = u2
0
=gR0, Ca2 = �2u0=�2, i.e., the slenderness

ratio, and the Reynolds, Froude and capillary numbers, respectively, where g and � denote the

gravitational acceleration and the liquid's density.

For small Reynolds numbers, Re2 = �Re with Re = O(1), and, depending on the magnitude

of the Froude and capillary numbers, several 
ow regimes can be identi�ed. Here, we consider

Fr = F=� and Ca2 = Ca=� which correspond to low gravitational �elds and small surface

tension. Substitution of these values and expansion of the dependent variables as

� = �0 + �2�2 +O(�4); (1)

where � denotes dependent variables, i.e., u, v, p, Ri, i = 1; 2, and R, in the governing

equations and boundary conditions, together with the expansion of the boundary conditions

around R0(t; x), R10(t; x) and R20(t; x) yield asymptotic expansions which at leading order, i.e.,

at O(�0), can be written as

ui0 = Bi(t; x); pi0 = Di(t; x); vi0 = Ci(t; x)=r � Bixr=2; i = 1; 2; (2)

B1 = B2; p20 = D2 = pe + 1=(CaR20)� 2
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(A2)t + (B1A2)x = 0; (A1)t + (B1A1)x = 0; 2C1 = 2C2 =
�
R2

0

�
t
+
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where A1 = (R2

0
�R2

10
)=2 and A2 = (R2

20
�R2

0
)=2.
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Figure 2: Hollow, compound jet's geometry (top left), axial velocity (top right), axial traction

in the inner liquid (bottom left) and ratio of axial traction in the outer liquid to that in the

inner one (bottom right) as function of the axial coordinate. (Re = Re=Fr = �1=�2 = �1=�2 =

�=�2 = �1=�2 = _v1 = _v2 = 1, pi = pe = 0; Ca = 1: solid lines; Ca = 10: dashed lines; Ca= 0.5:

dashed-dotted lines).

The above equations contain seven unknowns, and, therefore, they are not a closed system.

In order to close this system of equations, we �rst determine the O(�2) approximations of the

axial momentum equation and shear stresses conditions at the three interfaces of the hollow,

compound jet, which yield the following expression

Re (A2 + �1A1=�2) ((B1)t +B1(B1)x) = Re=F (A2 + �1A1=�2) + 3 ((A2 + �1A1=�2) (B1)x)
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Equations (5)-(7) clearly show the coupling between the pressure of the gases enclosed by the

hollow, compound jet and the dynamics of the liquids that constitute the hollow, compound

jet. For steady 
ows, Eq. (6) can be easily integrated but the solution of Eq. (7) requires

numerical techniques. For time-dependent phenomena associated with inlet or take-up velocity


uctuations or variations of the pressure of the gases enclosed by the hollow, compound jet,

Eqs. (5){(7) are nonlinear and of the mixed hyperbolic-parabolic type. Equation (7) was solved

by means of implicit, second-order accurate in both space and time �nite di�erence method,

whereas Eq. (6) was discretized by means of upwind di�erences in space and second-order

accurate �nite di�erence in time, and the resulting system of nonlinear algebraic equations

was solved iteratively until the di�erences between two successive values was less than 10�12.

The minimum number of grid points used in the x-direction was 2002, and the time step was

selected so that the calculations were independent of this step.



Some sample results illustrating the e�ects of the capillary number and pressure of the gases

enclosed by steady, hollow, compound jets are presented in Figures 2 and 3, respectively. These

�gures show the jet's geometry as a function of the axial coordinate, and the leading-order axial

velocity pro�le which increases sharply near the downstream or take-up point. Also illustrated

in the �gures is the axial traction on the inner jet which also exhibits a sharp increase near the

downstream boundary, whereas the ratio of the axial traction in the outer liquid to that of the

inner one decreases along the jet until a value equal to one is reached. This ratio increases as

the capillary number and the pressure of the gases enclosed by the jet are decreased. The jet's

radii increase as pi is increased. Although not shown here, it has also been observed that ratio

of traction forces increases as the Reynolds{to{Froude number ratio and �1=�2 decrease, and

as �1=�2, �=�2, �1=�2, pe, the volumetric 
ow rates of the inner ( _v1) and outer ( _v2) liquids and

the Reynolds number increase, for steady, hollow, compound jets.
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Figure 3: Hollow, compound jet's geometry (top left), axial velocity (top right), axial traction

in the inner liquid (bottom left) and ratio of axial traction in the outer liquid to that in the

inner one (bottom right) as function of the axial coordinate. (Re = Re=Fr = �1=�2 = �1=�2 =

�=�2 = �1=�2 = _v1 = _v2 = Ca = 1, pe = 0; pi = 0: solid lines; pi = 0.1: dashed lines; pi = 1:

dashed-dotted lines).

The e�ects of time-dependent variations in the leading-order velocity at the the upstream

and downstream boundaries have also been analyzed numerically for the cases in which these

velocities increase or decrease linearly as functions of time and for cases in which these velocities

oscillate in a sinusoidal manner. In the latter, a new nondimensional number, i.e., the Strouhal

number, appears in the boundary conditions; this number represents the ratio of a residence

time to the period of the imposed velocity 
uctuations. These time-dependent studies were

aimed at assessing the stability of hollow, compound jets and determining their nonlinear

coupling with the pressure variations that occur in the gases enclosed by the jet on account of the

changes in its geometry. Since the 
ows considered here correspond to low Reynolds numbers,

the gases enclosed by the hollow, compound jet were assumed to behave polytropically.

Figures 4 and 5 show the jet's geometry and axial velocity component at the takeup point
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Figure 4: Hollow, compound jet's geometry (left) and axial velocity component at the takeup

point (right) as function of the axial coordinate. (Re = 10�4, Re=Fr = 0, �1=�2 = 10, Ca =1,

�1=�2 = 1, �=�2 = �1=�2 = 0:1, _v1 = _v2 = 0:5, pe = pi = 0, a = 0:1, S = 1; t = 0: solid lines;

t = 50: dashed lines; t = 100: dashed-dotted lines; t = 150: dotted lines.
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Figure 5: For caption, see Figure 4.

as function of the axial distance at four di�erent times when B(0; t) = 1 + a sin(St) and

B(1; t) = Bs(1 + a sin(St)), respectively, a = 0:1 and S = 1, where S is the Strouhal number

and Bs denotes the steady downstream velocity corresponding to a = 0, for three di�erent

values of Bs. For these parameters, the jet's geometry becomes a quasiperiodic function of

time and the ratio of axial tractions oscillates in a quasiperiodic manner for Bs = 100, the

axial traction force is more sensitive to velocity variations at the downstream boundary than to

those at the upstream boundary on account of the larger axial velocity and the steep gradients

at the take-up point. The results presented in Figures 4 and 5 illustrate the initial transients

in the jet's geometry and show the presence of fronts.

The jet's geometry and ratio of the axial traction in the inner liquid to that in the outer one

as function of the axial distance were also determined when B(0; t) = 1+ at for t � tr, a = 0:5

and tr = 1 and the results indicate that the jet's radii increase with time until a steady state

corresponding to B(0; t) = 1:5 is reached, whereas the ratio of traction forces �rst increases

and then decreases until a steady state is reached. The ratio of traction forces at t = 1 is about

10% larger than at t = 0. For a = 0:1 and tr = 5, the results indicate that the largest ratio of

traction forces may be larger than 2% its initial value even though its initial and �nal steady

values are exactly the same as the ones corresponding to a = 0:5 and tr = 1. This large increase

in the axial traction ratio as a increases while atr =constant may cause �ber rupture. Results

not shown here indicate that the traction force ratio may reach large values under transient

conditions which may cause �ber rupture or �ber slippage under cooling and solidi�cation.
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