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Figure 3: Comparison between the predicted and measured parameters for flow with neutral buoyant spheres
(experimental data by Alajbegovic et al., 1994),
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Flgure 2: Comparison between the predicted and measured parameters for flow with positive buoyant spheres
(experimental data by Alajbegovic et al., 1994).
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Figure 1: Comparison between the predicted and measured parameters for flow with negative buoyant spheres
(experimental data by Alajbegovic et al., 1994),
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where the contribution due to particle collisions is
contained in:

Co = pats1+5g(x)ar, ) %)

We note that the triple correlation term is modeled by
analogy with turbulent single-phase flow. Both
equations may be used to rewrite the dispersed phase
Reynolds stress equation as,

—-——-—-3; d.j ——————avd,
- QaPa| Vayva; == x, Vg Ve, >,

—Ky + Wl + Wi, = ®

I uaera
VaivVa g

-7——7—3;:1: T
= —0aPaVaiV ~—-K; +W,
s { dPaVaivVa) &, ! d}

where the contribution due to interparticle collisions is:

a (5 ' 7

Ky =~&x, (‘%Pdgag Vi kb +V5 ka6, )) 9
J ——— 4

K, =-o'bc, (%Pdgag Vd,lkd) (10)

These two terms can be neglected when the dispersed
phase volume fraction is small and theére are not many
collisions between the particles. Equation (8) can be
used to express the dispersed phase's Reynolds stress
as: :

——
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Interestingly, in the case of negligible collisions and
small gradients in the dispersed phase's mean velocity,
the above equation reduces to,

k
vdrvdr _CR=£'Vcrvcr (12)
¢

where the coefficient, Cy , equals to 0.7 for the lateral
normal stresses and 1.0 for the shear and axial
Reynolds stress.

CONCLUSIONS

The resultant models were implemented into a CFD
code. The flow parameters were predicted over a wide
range of flow conditions and particle densities as can
be seen in Figures 1, 2 and 3. Overall, the two-fluid
model resulted in good agreement with the
experimental data. It appears that two-fluid models are
inherently capable of predicting multidimensional
phase distribution phenomena in turbulent multiphase
flows,
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Abstract — Turbulence plays a very important role for the distribution of particles in dispersed particle/liquid flows.
Single particle motion is affected by the level of the surrounding turbulence field and the size of turbulent eddies.
Both parameters are customarily included in the development of dispersion models. What is usually neglected is the
non-isotropy of the turbulent field. It is well known from the available experimental data that turbulence field is
seldom isotropic. Even in simple geometries, like pipe flow, turbulence is highly non-isotropic with the largest
component in the flow direction. The non-isotropy affects the motion of particles. The modeling of turbulence non-
isotropy requires the solution for the complete Reynolds stress, which means solving six additional partial
differential equations instead of the customary solution of the turbulence kinetic energy equation. This represents
considerable computational effort. In the present study an algebraic stress model for the non-isotropic velocity
fluctuations for both the continuous (liquid) and dispersed (solid) phase is presented. This model requires
considerably less computational resources than solving the complete set of Reynolds stress equations. The model
has been tested using a computational fluid dynamics (CFD) code. Simulations were done for solid particles of
different densities — positive, negative, and neutral buoyant particles. The results were compared against
experimental data. Good agreement with the computed results was observed.

SUMMARY OF TURBULENCE NON-
ISOTROPY MODELING where, a, =-1/20, b, =-3/20. As implied before,
the total Reynolds stress of the continuous phase can

The continuous fluid phase velocity fluctuation can be be written as the sum of particle-induced and shear-

decomposed into a particle-induced (P/) and shear- induced parts:
induced (S7) part (Sato & Sekoguchi, 1975; Theofanus
& Sullivan, 1982): ;fe =-1-:§e,1>1 +"E§e,SI 3)

r__ P 81 . :
Ve Ve *V, , 1) The continuous phase shear-induced Reynolds stress,
<,

Lance & Bataille (1991) performed experiments in
bubbly flows with grid generated turbulence and found
that the above decomposition is valid for dilute
dispersions, as is the case in the present study.

Particle-induced velocity fluctuations can be estimated
using the inviscid flow assumption for the flow around
each particle. Applying cell model averaging yields the
Reynolds stress tensor (Nigmatulin, 1979; Amold er
al., 1989; Park, 1992) in the following simple form:

" =p, %d—h;r;r +bl(;;" vy )I] )
[4
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T. ., was modeled using an algebraic stress model
(Demuren & Rodi, 1984). For the dispersed phase
Reynolds stress we make the classical assumption that:

-~

viv’,
EJ = Constant 4)

Based on this assumption and using both turbulence
kinetic energy equation and Reynolds stress equation
for the dispersed phase, it is easy to prove that:

’ i ’ ’ -
Dotypivaiva; = VdivVd,y Doy pika
Dt T k4 Dt

(5)




