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Figure 2. Fluidization of (a) large particles and (b) large particles with fines.
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[image: image2.png]control volume surfaces and the scalar variables in the center. The integration of the conservation
equations is performed using the power law scheme in space and an implicit scheme in time. A
semi-implicit intergration method is used to solve the equation of particle motion (3). In the model
two time scales are distinguished which means that two different time steps are used. A fluid force

time step At is used to resolve the gas phase equations, and within this fluid time step several

particle time steps Aty for the hard-sphere particle simulations. The fluid force time step At is
chosen to be smaller than the particle relaxation time 7, at maximum packing concentration. In
order to save CPU time several particle control volumes (PCV) within the fluid control volume is
used. The fluid control volume is taken large enough to have a representative elementary volume,
but little enough to have small changes in flow properties. The surface of the PCVs is chosen to
order the particle surface. A minimum particle time step is defined such that any particle having the
actual maximum gas velocity only can pass 20 % of the minimum length of the PCV. This
calculated timestep is used if it is less than the maximum particle time step Atp, defined by user.

The gas motion is calculated using the equation (1) and (2) at the time step ¢+4¢ with the drag force
being estimated at the time step ¢. Then the particle positions are calculated for the next particle
time step t+Aty using equation (3) and then a check for overlapping between particles entirely
within the PCVs is performed and then between particles in two adjacent PCVs. Once an
overlapping between two particles has been detected the particles are placed in their previous
positions. Then the collision dynamics is calculated inducing a change of the translation and
rotation velocities and the position of the two particles. The particle’s corresponding gas velocity (at
time step ¢+A4t) and porosity (at time step #) is calculated by linear interpolation within the fluid
control volume. After finding the new velocities and positions of all particles at the time step #+4¢,
the void fraction is estimated and the drag forces on every particle summarized within each fluid
control volume. Then we continue to compute the gas motion at the time step t-+24t.

Objective of this study

Previously, we have studied the influences of the porosity function (taking into account the
clustering effect of particles on the isolated particle drag force) on the gas-particle flow behaviour °
and the influences of interparticle forces of cohesive particles in a dense fluidized bed '°. In this
study we study the influences of the presence of fines on the fluidization of large particles originally
in the state of particulate fluidization. The solids mixing rate of large particles increases
dramatically within the bed when adding fines (figure 2). This is due to both (a) a decrease in the
interstitiel volume thus an increase in gas velocity and (b) an increase of the momentum of large
particles during multiple collisions with the fines. We have carried out a systematic study by
varying the diameter of the fines and their quantity in order to show this phenomenum.





[image: image3.png]where ¥, and @, are respectively the translation and angular velocities before impact. The impact
angle y is defined as the angle between the normal 7 and the relative velocity ¥ such that
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V€ L—Z',ﬂ}. We consider the conservation of kinetic momentum of translation during the collision

where V, represent the velocities after collision :

AP =m@, -9, )=-m,@, -7, (10)

The normal component of AP does not affect the angular velocities. However, the tangential

cormponent AP provokes a variation of the rotational momentum. represents the We can calculate
the velocities after impact if we know the variation of momentum AP :
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The Coulomb friction law neglects the fact that an object can pivot on another object. Instead of

developping a complex model it is common to introduce a tangential restitution coefficient S.
Foerster et al. ® showed that the variation of momentum AP during impact could be written :

oy 2 »
AP =—m,(1+e)p" —;m2(1+ﬁ)v§’ (15)

For great values of the impact angle y >y, thus a sliding contact, the tangential restitution
coefficient for glass spheres was found B, €[0.35,0.50]. For small impact angles y < y,, we define
B, = -1-(72)u(1+e)coty, such that the interaction between the particles during impact can be
described by the Coulomb friction coefficient and the inelastic restitution coefficient. Foerster et al.
$ showed experimentally that the model captures the behaviour of the impact between glass spheres
over a wide range of incident angles. The collision parameters used in the present study is taken
from these experimental data.

Solution technique

Equations (1) and (2) are solved by a finite volume method. The well known SIMPLE scheme is
used as iterative solution procedure. A staggered grid is used with velocity components stored at the





[image: image4.png]m is equal to 1 for laminar interstitial flow. The drag coefficient Cj on a single sphere is given by
Schiller and Naumann °:
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A number of empirical relationships of the drag coefficient have been proposed in the litterature.
However, there is little information available on the drag of particles in particle clusters. Analytical
models are difficult, because the surface of every particle must be taken into account. Most of the

data for particle drag have been inferred from sedimentation and uniform fluidization studies. f{¢) is
a porosity function taking into account the presence of other particles on the drag force of an
isolated particle as they affect the flow pattern in a uniform suspension. The restriction of the flow
spaces between the particles in denser zones results in steeper velocity gradients of the gas phase,
thus greater shearing stresses and an increase in resistance of the gas flow. This influence has often
been taken into account in numerical studies of gas-particle flows by using the experimental results
on sedimentation and fluidization of Richardson and Zaki °

fle)=¢" (6)
with
log(R—CL ,
B Re . ;
e loge,, ' (7

The collision model proposed by Walton 7 is used to compute the dynamics of instantaneous
inelastic non-frontal collisions with friction based on three constant coefficients. The first
coefficient e characterizes the incomplete restitution of the normal component of the relative
velocity at the point of contact. The second u arises in collisions involving sliding and has been
assumed to be resisted by Coulomb friction. The third £ arises in collisions that return a fraction of
the energy stored in the elastic deformation of both surfaces to the component of the contact
velocity tangent to the spheres. We consider two particles of diameter d, and d, and with masses m,

and m,. The positions of the sphere centers are described by the vectors 7 and 7,. The unit normal
7 at the contact point is defined by:

_n-r
7l — (8)

The relative velocity ¥, between the two particles at the contact point is given by :

5 =7, (ié)+_.z.(;>) ©)
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In this paper we investigated numerically the influence of the presence of fines on the fluidization
behaviour of large particles. The numerical simulation plays an important role in the prediction of
the flow behaviour in fluidized beds [1, 2]. Both Eulerian and Lagrangian approaches can be used to
describe the system. At present the Eulerian description for both the solids and gas phase is most
developed, but interest in the mixed Eulerian-Lagrangian approach ** is growing as computional
capacity increases.

Numerical model

The Eulerian / Lagrangian method computes the Navier Stokes equation for the gas phase and the
motion of invidual particles by the Newtonian equations of motion. For the gas phase, we write the
equations of conservation of mass and momentum :
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In discrete particle models for each individual particle an equation of motion is solved during the

free flight phase :
v, |
mi dt =m g +F:1rag I/pvl7 : (3)

where m,, v, represent respectively the mass and velocity of the i® particle and the right hand side
the sum of the forces acting on the i® particle; the first term is due to gravity, the second due to drag
between the gas and solids phase and the third the pressure gradient force. The unsteady forces have
been neglected due to the high solids to gas density ratio. The slip / rotation or Magnus lift force
and the slip / shear or Saffman lift force have also been neglected due to the small particle diameter.
The drag force is quantified through the equation:
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