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INTRODUCTION

Recently, numerical simulation of complex flow in multi-scale structures plays an impor-

tant role in engineering problems. The turbulence is a common example. The viscous

flow in the annular space between two concentric rotating circular cylinders is a very

interesting shear flow without a pressure gradient in the direction of mean flow. There

is primarily the case that the inner cylinder is rotated and the outer is at rest. In this

flow, a basic laminar axisymmetric flow is known as the Couette flow. When the rotation

speed of the inner cylinder is increased beyond a certain critical value, the Couette flow

becomes unstable. The instability leads to the transition to a laminar cellular vortex flow,

referred to as the Taylor vortex flow.
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Fig. 1. Two concentric rotating
circular cylinders
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Fig. 2. Cross-section streamline
of Taylor vortices

The viscous flow in the annulus between two concentric cylinders with the inner one

rotating is of great importance not only in mechanical and chemical engineering but also

in fluid physics because the flow may offer the key to an understanding of the transition-

to-turbulence problem.

BASIC EQUATION

The basic equation of three-dimensional, incompressible viscous flow is described by the

Navier-Stokes equations. The momentum equation and the continuity equation can be

written as follows;

u̇i + ujui,j + p,i − νui,jj = fi, in Ω, (1)



ui,i = 0, in Ω, (2)

where the velocity and pressure are denoted by ui and p.

The boundary conditions are;

ui = ûi, on Γ1, (3)

ti = {−pδij + νui,j}nj = t̂i, on Γ2. (4)

whereˆmeans the given value and ti is the flux on the boundary, in which ni denote the

outward normal on the boundary.

TEMPORAL DISCRETIZATION

A Crank-Nicolson method is applied to the momentum equation (1) is discretized by

the full implicit scheme for the discretization in time, and the continuity equation (2) is

expressed implicitly as follows;
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u∗ is the linear approximation of advection velocity is given by the Adams-Bashforth

formula which has second order accuracy. Thus, as for the temporal direction, this is the

linear scheme which has second order accuracy.

In this scheme, the fractional step method is applied to obtain the Pressure-Poisson

equation. The pressure pn+1 in eq.(5) is approximated by pn in the previous time step,

and the unknown velocity un+1 is replaced by the intermediate velocity ũn+1 which may

not satisfy eq.(6). Thus, eq.(5) can be described as follows;
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ũ
n+ 1

2
i =

1

2

(
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By taking the difference between eq.(5) and eq.(9), the following equation can be obtained;
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By taking the divergence of eq.(11), substituting eq.(6) into eq.(11) and omitting the 2nd

and 4th order terms of eq.(11), the Pressure-Poisson equation can be obtained as follows;

∆t
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,ii − pn
,ii
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= ũn+1

i,i . (12)

The algorithm of this scheme is described as follows;



1) Assume initial velocity u
(0)
i and p(0).

2) Compute ũn+1
i by eq.(9).

3) Compute pn+1 by eq.(12).

4) Compute un+1
i by eq.(11).

5) Go to 2).

In a certain problem which converges to the steady state, as the intermediate velocity ũ

converges to the real velocity u, the difference between pn+1 and pn is zero. Therefore, the

continuity condition doesn’t depend on the time increment ∆t in this scheme, because

the Pressure-Poisson equation (12) converges to eq.(6) in the steady state problem.

About the spatial discretization, in case of the equal-order interpolation, the solutions

tend to be unstable because the stabilized term is not used in this scheme. Thus, it’s

necessary to introduce the mixed interpolation.

SPATIAL DISCRETIZATION

The mixed interpolation for velocity and pressure fields is applied for the spatial dis-

cretization based on the MINI element.

The bubble function element is used for the velocity, which can be expressed as;

ui = Φαuiα

= Φ1ui1 + Φ2ui2 + Φ3ui3 + Φ4ui4 + Φ5ũi5, (13)

ũi5 = ui5 − 1

4
(ui1 + ui2 + ui3 + ui4) , Φ5 = φe,

and the linear element is used for the pressure as;

p = Ψλpλ = Ψ1p1 + Ψ2p2 + Ψ3p3 + Ψ4p4, (14)
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Fig. 3. MINI element

where φe is the bubble function of C0 continuous and Φα(α = 1 ∼ 5) is the bubble

function element for velocities in five-node tetrahedral element, Ψλ(λ = 1 ∼ 4) is the

linear interpolation for pressure in four-node tetrahedral element and uiα and pλ represent

the nodal values at the αth node of finite elements. The corresponding weighting function

is similar to eqs.(13) and (14) is used.



NUMERICAL EXAMPLE

Fig.4 shows the simplified analytical domain of the flow to be used for the numerical

computation. The small annular gap width is denoted by d. About this model, the radius

of inner circular cylinder is 7.3195 and that of outer circular cylinder is 8.3195. The height

of a circular cylinder is denoted by h = 4. In Fig.5, The finite element mesh is divided

into 90,200 nodes and 480,000 tetrahedral elements. The mesh contains 10 elements in

the radial direction, 200 elements in the circumferential direction and 40 elements in the

axial direction. The boundary conditions are given as follows;

U = 1, w = 0, on the inner cylinder,

u = v = w = 0, on the outer cylinder,

u = v = w = 0, on the top and bottom

of the cylinders.
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Fig. 4. Analytical domain
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Fig. 5. Finite element mesh : 90,200 nodes 480,000 tetrahedral elements



CONCLUSION

In this study, the finite element analysis of the phenomena of the viscous flow in the

annular space between two concentric rotating circular cylinders with inner one rotating

in three-dimensional model is presented which is an example of the Taylor vortex flow.

The Taylor vortex flow in three-dimensional model will be solved by the present method.
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Fig. 6. Numerical Result Streamline ( Re = 200 )


