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The theme of convection in enclosures filled with saturated porous media is a very popular one in the literature. The reason is the abundant applications, such as heat transfer in geothermal energy systems, storage of radioactive nuclear waste materials, pollutant dispersion in aquifers1-2.

Various situations were examined in relation with the convection heat transfer in a porous medium between two vertical concentric cylinders3-5. For example, a parametric study has been performed4 to evaluate mixed convection heat transfer in a porous medium between two vertical concentric cylinders for a constant temperature outer and a insulated inner boundary conditions. The authors of that paper claim on the fact that their simulation is related to the feasibility to extract energy from the liquid magma region located near the earth’s surface. Bau and Torrance6 analyzed convection in the annulus between vertical coaxial cylinders, and they found the preferred mode of convection is asymmetric. Charrier-Mojtabi et al7 presented a numerical and experimental study of two-dimensional convection.

A linear stability analysis is performed in the present paper for the free convection between two co-axial cylinders filled with a porous medium. 

BASIC EQUATIONS

We take a cylindrical polar co-ordinates system 
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. In usual notations, the basic equations are:
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	(2a-c)
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where 
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 is the Laplacean and the Boussinesq hypothesis was used: 
[image: image11.wmf](

)

[

]

m

T

T

-

b

-

r

=

r

1

0

, with 
[image: image12.wmf]m

T

 a mean temperature defined below.. We eliminate pressure 
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 from Eqs. (2)-(4) to have:
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The boundary conditions of  Eqs. (1), (3-5) are 
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where 
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. We introduce the non-dimensional variables:
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where . The governing equations (1), (3-5) become
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	(9a-b)
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where 
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 is the Rayleigh number and M is a parameter defined as: 
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where a = R/L.
Undisturbed field

If we take an axisymmetric field 
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	(12a-c)
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subject to the boundary conditions
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These equations give
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where C is a constant and Eq. (13) transforms to
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If we take x = Mr, then Eq. (16) reduces to
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subject to
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These boundary conditions are not sufficient to determine the solution of Eq. (17) uniquely because C still remains as a arbitrary constant. In order to obtain a unique solution, we impose an aditional condition of zero flux in the 
[image: image59.wmf]z

–direction. This condition is actually satisfied in a fluid layer of finite depth and we require the same condition in the limit of infinite depth. Then
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The general solution of Eq. (17) is 
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where A and B are undetermined constants yet. Using (18-19) and some properties of Bessel functions the values of the constants A, B and C are readily obtained.

Stability analysis

In order to examine the stability of the steady field
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we superimpose the infinitesimal disturbances: 
[image: image64.wmf](

)

w

v

u

ˆ

,

ˆ

,

ˆ

ˆ

=

V

 and 
[image: image65.wmf]T

ˆ

, to obtain 

	
[image: image66.wmf]V

V

V

ˆ

+

=

s

, 
[image: image67.wmf]T

T

T

s

ˆ

+

=


	(22a)


We remark now that the undisturbed fields do not depend on  and z, so that they can be decomposed into the Fourier components
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where  denotes the wavenumber in the z-direction, n is an integer and = r+ iiis a complex circular frequency, r/ being the phase velocity and i is the amplification rate. According as i is positive zero or negative, the disturbance is amplified, neutral or damped. Substituting (22a-b) into Eqs. (8) and (10) we have for T0 > 0
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where 
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We solve now Eqs (23) subject to the boundary conditions
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Eliminating  from Eqs. (23), we obtain
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and finally we have
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subject to the boundary conditions
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The problem is now to solve the eigenvalue problem consisting of (26) and (27), where c is the eigenvalue and a, n, , Ra and M are parameters. The neutral curves (characterized by ci = 0, i.e. a temporal analysis) are calculated for various values of the parameters a, n, , Ra and M. The strategy is to minimize the problem with respect to the Rayleigh number for fixed values of a, n,  and M.  The numerical method used in this study for the stability analysis is the well-known compound matrix method.
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