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Abstract 

In this paper we consider ways in which macroscopic symmetries impact on the structure 
and information content of scattering matrices in vector electromagnetic theory. We show 
how these symmetries can lead to a consistent and complete parameterization of 
depolarization behaviour and examine the potential for using these ideas to extract 
information about non-spherical and complex particles in random media scattering 
applications. 

1 Introduction 
Polarization effects in wave scattering by non-spherical particles forms a topic of great interest in 

many applications. While several powerful modeling techniques have been developed for predicting the 
quantitative vector nature of such scattering, there remains a need to augment this with methods for 
validation and interpretation of the predictions of such models. In addition, advances in measurement 
techniques have opened the possibility of fully populating scattering matrices from experimental data and 
this in turn offers the possibility of improved parameter retrieval, such as particle shape and composition, 
from scattered field measurements of complex random media.  

In the absence of suitable canonical wave solutions for many complex geometries of interest, 
scattering symmetries and physical constraints provide an important means of satisfying such needs. In 
this paper we look at a new way of integrating these constraints into a self-consistent parameterization of 
wave depolarization by complex particle clouds. That scattered powers are always non-negative and wave 
coherences lies between 0 and 1 are simple physical constraints, but ones with a subtle impact in vector 
scattering theory. For example, we shall show that parameterization of an important class of depolarizers 
defines a cube in Stokes space [1], but do all points inside the cube satisfy even these two simple physical 
constraints? We shall show in this paper that they do not and that only a subset of the cube contains valid 
physical depolarizers. Given this shortcoming, we can then ask if there is not a better way of studying 
depolarizers with symmetry and physical constraints built into the parameterization from the start. Such a 
scheme forms the central focus of this paper. 

In polarization studies, interest centers on the Mueller matrix [M] that relates incident and scattered 
Stokes vectors. Importantly, the structure of [M] reflects symmetries in the underlying complex amplitude 
or [S] matrix. For example, the vector wave reciprocity theorem in backscatter causes a symmetry in [S] 
which limits the form of the Mueller matrix (for arbitrary random scattering problems) to that shown in 
equation 1 [2], where we note that there is an important constraint equation on the diagonal elements, 
leaving [M] with only 9, rather than 16 degrees of freedom. Reciprocity symmetry then limits the types of 
depolarization we can observe in backscatter. 

In general [M] = f([S]) changes the degree of polarization of the wave but has the property that if the 
incident wave entropy is zero (a purely polarized incident wave) then the scattered wave entropy is also 
zero. This ‘conservation of zero wave entropy’ is an important idea in polarization theory. Fundamentally, 
this property has to do with the reversibility of the mapping from [S] to [M] as 
[M] = f ([S]) ⇒ [S] = f −1([M])?  
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    Reciprocity ⇒ m11 − m22 + m33 − m44 = 0   (1) 

 
However there exists the possibility of formulating a set of Mueller matrices that do not correspond to a 
single [S] matrix at all, called depolarizers. The most extreme example of these is the isotropic 
depolarizer, with a Mueller matrix of the form shown on the left hand side of equation 2 [1] 
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This matrix converts all Stokes vector into a randomly polarized wave, but there is no corresponding 
single [S] matrix. This form leads to a standard generalization of the depolarizer as shown in two stages 
from left to right in equation 2. The middle is a partial depolarizer while the right hand form generalizes 
to an anisotropic partial depolarizer with arbitrary direction in Stokes space (the matrix O3 is a 3 x 3 real 
rotation matrix of the Poincaré sphere). However, we can ask if all such depolarizers are physically 
consistent and do these forms exhaust all possibilities? To answer these questions we need to look in 
more detail at the nature of depolarization. To do this we introduce the scattering coherency matrix. 

2. Scattering Coherency Matrix Formulation 
The Mueller matrix can be conveniently converted into a 4 x 4 Hermitian coherency matrix [T] which is 
positive semi-definite and so guarantees that all scattered powers will be non-negative and coherences 
less than or equal to 1 [3,4].  The mapping from [M] into this 4x4 matrix [T] is shown for reference in 
equation 3. 
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⇒< T[ ]>=

1
2

m11 + m22 + m33 + m44 m12 + m21 − i(m34 − m43) m13 + m31 + i(m24 − m42) m14 + m41 − i(m23 − m32)
m12 + m21 + i(m34 − m43) m11 + m22 − m33 − m44 m23 + m32 + i(m14 − m41) m24 + m42 − i(m13 − m31)
m13 + m31 − i(m24 − m42) m23 + m32 − i(m14 − m41) m11 − m22 + m33 − m44 m34 + m43 + i(m12 − m21)
m14 + m41 + i(m23 − m32) m24 + m42 + i(m13 − m31) m34 + m43 − i(m12 − m21) m11 − m22 − m33 + m44
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As [T] is positive semi-definite (PSD) Hermitian it has real non-negative eigenvalues and orthogonal 
eigenvectors. For example, by mapping the general depolarizer D of equation 2 into [T] we see that the 
real diagonal elements δ1, δ2 and δ3 are constrained by the four inequalities shown in equation 4. If we 
consider δ1, δ2 and δ3 as defining a unit cube in Stokes space then equation 4 represents four planes in this 
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space that further constrain the region of physical depolarizers.  By using [T] we can then avoid problems 
of considering non-physical [M] matrices inside this cube by mistake. 
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For the case of a ‘general’ depolarizer proposed on the far right in equation 2, obtained by a rotation of 
the Poincaré sphere, the coherency matrix [T] is transformed as shown in equation 5 
 

g' =
1 0
0 [O3]
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⇒< T[ ]>'= U4 B[ ]< T[ ]> U4B[ ]*T  U4B[ ]= U2[ ]⊗ U2[ ]*

                           (5) 

 
We shall see that this represents only a subset of possible depolarizers and leads to a more general 
classification based on 4 x 4 unitary matrix transformations of T[ ]'= U4[ ] T[ ] U4[ ]*T  as follows. 

3. General Theory of Depolarization 
In this section we formulate a general model of depolarization that scales to arbitrary dimension of the 
coherency matrix N x N. The basic idea is to identify the ‘polarizing’ contribution with the dominant 
eigenvector of the coherency matrix, i.e. the eigenvector corresponding to the largest eigenvalue. The 
other eigenvectors then contribute to depolarization with a strength given by the remaining minor 
eigenvalues. By employing multidimensional unitary transformations we will then be able to parameterize 
all possible types of depolarization. We first start with the general formulation and then specialize it to the 
three important cases for N = 2,3 and 4. We then consider the effects of scattering symmetries on 
constraining the degrees of freedom involved in both polarized and depolarized components [4]. 

The starting point for our analysis is the idea of a unitary reduction operator [U-1], which acts to 
reduce the dimensionality of an N x N unitary matrix to N-1 x N-1 as shown in equation 6 
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HN−1 = hkΨk
k=1

M

∑   ⇒ h = depolarisation state vector  

We then identify the submatrix UN-1 with the depolarizing aspects of the scattering process. In this way 
UN-1 involves continuous smooth transformation away from the polarized reference state (the dominant 
eigenvector).  The submatrix UN-1 may be further parameterized in terms of an N-1 x N-1 Hermitian 
matrix, related to the unitary transformation by a matrix exponential and itself conveniently expanded in 
terms of a set of scalar parameters, being the basis elements of the underlying algebra [5].  

This then leads us to propose the following notation to characterize the number of parameters involved 
in polarizing and depolarizing components of the decomposition of a general N x N coherency matrix TN 
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TN = [E + L]+ (E + L)                                                              (7) 
where [..] are the depolarizing parameters and (..) the polarizing terms and for each, E are those 

parameters associated with the eigenvectors and L the eigenvalues. From the general structure of N x N 
coherency matrices we then have the following constraints: 

 
• [L] + (L) = N 

• [E] + (E) = dim(SU(N)) - rank(SU(N))=N(N-1) 
Note that the total number of eigenvector parameters = [E] + (E) = dim(SU(N)) – r(SU(N)) where 
dim()=N2-1 is the dimension of the group and r = N-1 is the rank of the Cartan sub-algebra or the number 
of mutually commuting generators [5]. For example for N=1 there are no useful eigenvector parameters, 
for N=2 we only have two, while for N= 4 (the most general scattering case) we have twelve parameters 
available. In this case [T]/[M] have up to 16 parameters and SU(4) is the governing unitary group. SU(4) 
has dimension 16 and rank 4 so [E]+(E) = 16-4 = 12 and [L] + (L)= 4 . By application of the unitary 
reduction operator, depolarization in general scattering systems is controlled by [L] = 3 eigenvalues and 
the SU(3) group for eigenvectors. SU(3) has dimension 8 and rank 2 [5] so that we can write the 
polarizing/depolarizing decomposition in compact form as shown in equation 8 
 

Tbistatic = [6 + 3] + (6 + 1)                                                          (8) 

which shows that there are now up to 6 eigenvector parameters associated with depolarization. However 
there are several important symmetries that reduce further the number of parameters. In the paper we shall 
show that depolarization is limited by the following cascades in the presence of increasing levels of 
scattering symmetry  

T4
recip = 2 + 3[ ]+ 4 +1( )      T4

plane = 2 + 3[ ]+ 2 +1( ) 

   (9) 

T4
bi sec trix = 2 + 3[ ]+ 4 +1( )    T4

bistatic+symmetry →     [0 + 3] + (3+1)  

 
We shall give examples and further discussion of these results in the full paper. 

References 
[1] S.Y. Lu, R.A. Chipman, 1996, “Interpretation of Mueller matrices based on the Polar decomposition”, 

JOSA A Vol 13, No 5, May, pp. 1106-1113 

[2] J. W.Hovenier, D W Mackowski, “Symmetry Relations for Forward and Backward Scattering by 
Randomly Oriented Particles”, J. Quant. Spectrosc. Radiat. Transfer Vol 60, pp 483-492,1998 

[3] S.R Cloude, “Polarimetry in Wave Scattering Applications”, Chapter 1.6.2 in SCATTERING, 
Volume 1,Eds R Pike, P Sabatier, Academic Press, 2001, ISBN 0-12-613760-9 

[4] S.R. Cloude, “A New Method for Characterising Depolarisation Effects in Radar and Optical Remote 
Sensing”, Proceedings of IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS 2001), Sydney, Australia, Vol.2, pp 910-912, July 2001 

[5] S.R.Cloude, " Lie Groups in EM Wave Propagation and Scattering", Chapter 2 in Electromagnetic 
Symmetry, Eds. C Baum, H N Kritikos, Taylor and Francis, Washington, USA, ISBN 1-56032-
321-3, pp 91-142, 1995 


	kyurkchan_manenkov_final.pdf
	1 Introduction
	2 The statement of the problem and main relations.
	3 Numerical algorithm and some results.
	Acknowledgments

	References

	Kyurkchan_Skorodumova_final.pdf
	Solving the diffraction problem of electromagnetic waves on objects with a complex geometry by the pattern equations method
	1Introduction
	2Statement of the problem and it’s solution
	3An examination of the convergence of calculation algorithm
	4Examination of mutual influence of objects
	5Examination of possibility of the scattering characteristics modeling for bodies with a complex geometry
	5Verifying of the validity of the optical theorem
	Acknowledgements

	References

	Kyurkchan_Smirnova_final.pdf
	1 Introduction
	2 Derivation of PEM integral-operator equation
	3 Numerical examples
	4 Conclusion
	Acknowledgments

	References

	Abstracts2.pdf
	kyurkchan_manenkov_final.pdf
	1 Introduction
	2 The statement of the problem and main relations.
	3 Numerical algorithm and some results.
	Acknowledgments

	References

	Kyurkchan_Skorodumova_final.pdf
	Solving the diffraction problem of electromagnetic waves on objects with a complex geometry by the pattern equations method
	1Introduction
	2Statement of the problem and it’s solution
	3An examination of the convergence of calculation algorithm
	4Examination of mutual influence of objects
	5Examination of possibility of the scattering characteristics modeling for bodies with a complex geometry
	5Verifying of the validity of the optical theorem
	Acknowledgements

	References

	Kyurkchan_Smirnova_final.pdf
	1 Introduction
	2 Derivation of PEM integral-operator equation
	3 Numerical examples
	4 Conclusion
	Acknowledgments

	References


	Abstracts3.pdf
	kyurkchan_manenkov_final.pdf
	1 Introduction
	2 The statement of the problem and main relations.
	3 Numerical algorithm and some results.
	Acknowledgments

	References

	Kyurkchan_Skorodumova_final.pdf
	Solving the diffraction problem of electromagnetic waves on objects with a complex geometry by the pattern equations method
	1Introduction
	2Statement of the problem and it’s solution
	3An examination of the convergence of calculation algorithm
	4Examination of mutual influence of objects
	5Examination of possibility of the scattering characteristics modeling for bodies with a complex geometry
	5Verifying of the validity of the optical theorem
	Acknowledgements

	References

	Kyurkchan_Smirnova_final.pdf
	1 Introduction
	2 Derivation of PEM integral-operator equation
	3 Numerical examples
	4 Conclusion
	Acknowledgments

	References

	Merchiers_final.pdf
	1 Introduction
	2. Theory
	3. Results
	3.1 Particles with μ = 1
	3.2 Particles with μ ≠ 1

	4 Conclusions
	Acknowledgements
	References


	Abstracts6.pdf
	1	Seasonal variations of the north-south asymmetry of polarization
	2	Causes of seasonal variations of Jupiter polarization
	3	Conclusion
	References
	Smirnova_Kyurkchan_final.pdf
	1 Introduction
	2 The statement of the problem and its solution
	3 Bodies of revolution
	4 Conclusion
	Acknowledgments

	References





