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Abstract 

   We consider here the electromagnetic wave scattering by a long and thin-wire (in comparison to the wavelength) 

helical particle. In contrast to several previous theoretical works, we adopt here the algorithm developed for 

scattering by a multi-layered fiber. In the present work a long helical particle is considered as a hollow cylinder with 

a thin non-homogeneous membrane for which the periodical boundary conditions are imposed. 

 

 

1 Introduction 
A helical particle is an exotic object, and till now it was scarcely considered in literature devoted to light scattering 
problems. 
In rare works concerned with this problem1, 2, numerical techniques are involved. In contrast to such approach, we 
develop here a formalism based on representation of a helical particle as thin non-homogeneous membrane and 
periodical boundary conditions. This allows for using the iterative technique and equations in the form obtained for 
a coated infinite cylinder3 on each iteration step. 

 

2 Basic considerations 
 

   Consider a helix oriented along z-axis (Fig. 1). 

 
  

 

 

 

 

 

 

 

Figure 1:  The geometry of helical particle 
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The equation of its central line is: 
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with ( )∞∞−∈ ,ϕ , and the tangent unit vector l̂  is 
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where 
cR

h
π2

Λ
=  and l is the length parameter. Consider the attendant local coordinate (ξ,ψ,ζ),with ζ̂ coinciding 

with l̂ . The outer surface points in these coordinates are (ξ,ψ,0): ξ2+ψ2=ρ2. However, for ρ << λ (wavelength) we 
can accept that inside the helix (not in the volume of helix, but in the “wire” itself) the field is homogeneous relative 
to ξ,ψ coordinates, and thus the boundary conditions can be formulated on the central line: ),,( ccc zyx . 

The case 0→cR  corresponds to an infinite thin wire, and the case ( )0
2

1
→Λ/= ρη  corresponds to a hollow 

cylinder with a thin homogeneous membrane (absolutely transparent if η=0). In general, the helix can be considered 
as a hollow cylinder with a thin (non-homogeneous) membrane and periodical boundary condition (the following 
expression is not accurate, because of the round shape of a wire forming the helix, but for a thin wire we can ignore 
such an inaccuracy): 
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with ρ/Λ<<1, and n=…-1,0,1,... The proper Fourier series is 
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and the similar series can be written for the refraction index m. Dealing with such a cylinder, we can formulate the 
periodical boundary conditions for z and τ components of E and H. Thus we have a hollow cylinder (Fig. 2 shows 
its cross-section), and three separated regions: 0- the inner medium (air), 1 – the helix, i.e., non-homogeneous 
membrane (gray area), and 2- the ambient medium (air).  
 

 

                  

                                    

 

a                                                                     b 
           Figure 2: The hollow cylinder cross-section: a) upper view, b) side view 

 

Here the inner radius is R1=Rc-ρ, and the outer radius is R2=Rc+ρ and ρ/Rc << 1 is presumed.  
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3 Solution for scattered field 
   Strictly speaking the wave equation does not have a close solution for the present boundary condition. However, 

this can be shown that in cases where parameter 
Λ

=
4
πρη  is very small or close to 0.5: 1<<η  or 15.0 <<−η , a 

convenient approximation does exist. In such an approximation one can represent the scattered field by the series of 
space (angular: θ  will be the angle between z-axis and the scattering direction) Fourier harmonics. 
   It seems reasonable to assume that the scattered and inner fields have periodical dependence on the coordinate z 
with the space period Λ. Therefore we suppose the periodical dependence of scattering coefficients on z. In the 
present case the scattering coefficients (except of the incident )(in

na  field) have to be represented as the Fourier 
series. However, every Fourier term requires its own radial dependence; therefore, we have to write the solution in 
the form. In a certain approximation the fields in the jth layer (j = 1,2) can be written as : 
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Where M and N are cylindrical vector harmonics4. 
   By writing m as ( ) ( )φδφ ,, zmmzm += , where δm is represented approximately by a Fourier series analogous to 
(3-1) we write the boundary conditions for the inner and outer boundary in the form similar to that appearing for a 
case of a layered cylinder3. The solving procedure prescribes to use ( ) mzm =φ,  at the first step for getting the zero 
order space harmonic for the scattered field and the fields in the hollow cylinder layers. The scattering coefficients 
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n

j
n PWTQ  appear as the standard solution3. At the following stage one obtains higher order 

harmonics as perturbations with respect to the small parameter δm. The proper equations take the similar form, 
where the zero order field solution with the factor δm appears at the place of the incident field. Thus the similar 
procedure can be used in the iterative manner. This corresponds to the physical interpretation, where the mean-field 
generates higher order perturbations.  
   Since the helix is taken as infinitely long, the θ-directions can be found in the same manner as the diffraction 
angles for the infinitely long gratings. In case of a finite length helix each θl is replace by a (narrow) continuous 
spectral shape. Being interesting in the total energy scattered in a certain θ angular order, one can fulfill integration 
with respect to θ in the proper interval and then reduce formally the problem to the similar form for the mean value 

of the scattering coefficients, say 
l

j
lnQ
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j
lnQ θθ ∆∈)(
, . In the case of the infinitely long helix, 

where a spectral function is reduced to the series of δ-functions we return to the original equations.  
              
              
 

4 Extinction and scattering coefficients  
 
   Consider the general relations4: 
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where R is the radius of a cylindrical surface around the helix (integration with respect to z can be fulfilled in the 
interval [0,Λ]) and 
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Since the incident field does not contain terms with factors 
lzihe Λ

, coefficients )(
,
sc
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lnB  with l > 0 will drop 

from expression for Wsc. Thus in the common relations4,5 we keep for Qext : 
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but for Qsc we have to take : 
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5. CONCLUSION 

 
In the present work we demonstrated a possibility of treating the problem of light scattering by a helical particle by 
using a Fourier approach. It is shown, that one can use a calculation procedure developed for a multilayered 
(hollow) cylinder to find all Fourier (diffraction) order of the scattered field. Thus a calculation technique turns out 
to be much simpler than it has been suggested before. 
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