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Abstract 

The new method for solving the problem of wave diffraction on a group of bodies of 
revolution is presented. The method is based on the simple algorithm and it allows to 
calculate the electromagnetic field and the pattern with high accuracy. 

1 Introduction 
The modified method of discrete sources (MMDS), offered in the paper [1], has been subsequently 

applied for solving a wide class of problems of diffraction theory, and in all the cases high efficiency of 
the method [2] has been shown. The uniform way of construction of the carrier of discrete (auxiliary) 
sources by means of analytical deformation of border of a scatterer is the main idea of the method. Thus a 
priori information of properties of analytical continuation of diffraction field inside the scatterer is 
materially used.  

The major practical issue is how to apply MMDS for solving the problem of wave diffraction on a 
closely located group of bodies. In consequence of diffraction interaction of the bodies the picture of 
arrangement of the singularities of the analytical continuation of wave field inside each scatterer can 
significantly differ from that which takes place in the case of a single body. In the case of close location 
of the scatterers singular points start "to be multiply", i.e. the singularities inside one body generate the 
singularities inside the other. In the paper some modification of MMDS is realized. This makes the 
method efficient for solving the problem of wave diffraction on a closely located group of bodies. The 
essence of this modification is that the carrier of discrete sources for each body is constructed using usual 
scheme of MMDS. However the sources surrounding the singular points, which appear because of the 
interaction between the scatterers, are appended in addition to the basic sources. In the paper the effective 
numerical algorithm for finding the singularities based on the continuation by a parameter is offered.  

 

2 The statement of the problem and main relations.  
Let the group of two bodies of revolution is located on one axis and bounded by surfaces  and . 

We choose the system of coordinates so that the axis  coincides with the axis of revolution of the 
bodies. Assume, that the impedance boundary condition on the surfaces of the scatterers is satisfied: 

1S 2S
z

( ), 1p p p pn E Z n n H p× = × × = ,2 , (1) 

where pZ  is the impedance on the surface  and pS pn  is the outward normal. The secondary field, 

everywhere outside the domains of the bodies, obeys the homogeneous Maxwell equations and the 
attenuation condition at infinity. 

Let's introduce the local systems of coordinates connected with each of the scatterer. We choose the 
origins of the systems inside the surfaces  and . Then the secondary field is equal to the sum of the 
fields scattered by each body: 
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Here  is the auxiliary surface of revolution located inside the initial surface  of the p-th body, pΣ pS pJ  is 

the unknown current distributed on the surface pΣ ,  is the wave-number, k η  is the wave impedance of 

the medium. The expressions for the electric and magnetic field components in the spherical coordinate 
system connected with the given body, are presented in [2]. Similarly to the paper [2] we pass to the 
parametrical representation of the surfaces of the scatterers. Then for the surfaces  and  we get: 1S 2S

sin cos , sin sin , cos , 1,2p p p p p p p p px r y r z r pθ ϕ θ ϕ θ= = = = , (5) 

where ( )p p pr r θ=  are the equations of these surfaces in the local spherical coordinates. The auxiliary 

surface  has the following equations: pΣ

sin cos , sin sin , cos ,p p p p p p p p px y zρ α ϕ ρ α ϕ ρ α′ ′ ′= = =  (6) 

where 

arg ( ), ( ) , ( ) ( )exp( ), 1,2.p p p p p p p p p p p p pt t t r t i it pα ξ ρ ξ ξ δ δ= = = + − =
 (7) 

In the formulas (7) pδ  is the positive parameter responsible for the degree of deformation of the contour 

of the p-th body cross-section, 1,2 [0, ]t π∈ . The choise of the parameters pδ  is described 

in [2]. By analogy with the paper [2] we present the unknown currents on the surfaces  in the form: 1,2Σ

2( sin ), ( ) ( )p p p p p p p p pJ I χ ρ α χ ρ α ρ α′= = 2+ , (8) 

where strokes mean the derivatives with respect to the corresponding arguments and 
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(9) 

From the formulas (2) - (9) it is easy to get the system of integral equations relative to the Fourier 
harmonics of four unknown currents 11 12 21 22, , ,m m m mI I I I . In the matrix form the system looks like: 

=KI B ,  (10) 

Where the matrix consists of four blocks: 

11 12

21 22

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

K K
K

K K
, (11) 

where each block is: 
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The kernels pq
i jK of the equations are similar to those presented in [2]. 

 

3 Numerical algorithm and some results.  
The usual scheme of the numerical solution of the system (10) is described in [2]. Let's consider the 

problem of finding the singularities of the scattered field under diffraction on the closely located group of 
bodies. Assume that the body of revolution with the smooth border is placed near the other body, which is 
sharp-pointed. Thus, it is supposed, that the second body singularity is situated close to the surface of the 
smooth one. We name this singular point as the singularity-source. Suppose, that given singular point has 
polar coordinates 0 0( , )r θ  in the coordinate system connected with the smooth body. 
As mentioned above, the singularity-source generates the additional singular point (singularity-image) 
inside the smooth scatterer, which would be absent under diffraction on this single body. To find the 
coordinates of the singularity-image we use the method of continuation by a parameter. As this parameter 
the distance  is used. The coordinates of the singularity-source are also found numerically. The equation 
defining the coordinates of the singularity-image inside the smooth body has the following form: 

0r

0
0( ) iif e r e θθθ −− = , (13) 

where ( )f θ  is the equation of the contour of the smooth body cross-section in the polar coordinate 
system connected with given body. The equation (13) defines the value of the complex angle θ  
corresponding to the singularity-image. The polar coordinates of this point are accordingly equal to: 

| ( ) |, arg ( ), ( ) ( ) i
i ir f e θξ θ θ ξ θ ξ θ θ= = = . (14) 

For further solution of the problem we surround all the singularities-images with the circles of the small 
radius. When these circles rotate they represent the toroidal surfaces with round sections. Thus the 
integrals over these toroidal surfaces are added to the expressions (2) and (3) for the scattered field. This 
gives rise to the additional discrete sources in the presentation for the secondary field. 

Comparison of the stated algorithm with the pattern equations method (PEM) presented in  
the paper [3] has been performed. As an example we have considered the diffraction of the plane wave 

0 exp( )xE i ikz= − , 0 1
exp( )yH i ikz

η
= −  (15) 

on two identical superellipsoids. The equation of the contour of the superellipsoid cross-section is: 

2 2

1
s sx z

a c
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (16) 

The sizes of the bodies are  and 2.5, 5ka kc= = 10s = . The minimal distance between the surfaces of the 
bodies is . In Fig. 1 the angular dependence of the module of the pattern for the concerning 
group of bodies (solid curve) is presented. The dashed curve demonstrates the results obtained by means 
of PEM. It follows from the figure that the results of calculations coincide with high accuracy. 

0.02kd =

Fig. 2 illustrates the advantages of the modified MMDS in comparison with the usual algorithm, 
which does not consider the singularities-images inside the smooth body generated by the singularities of 
the other body with rough border. The figure shows the residual of the boundary condition on the contour 
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of the cross-section of the spheroid near to which the double-cone is located. The double-cone is modeled 
by the generalized superellipsoid of the following kind: 

2 2

1
s sz x z x

c c
ν ν− +⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= . (17) 

Axial incidence of the plane wave (15) is considered. The sizes of the bodies have the following values: 
semi axes of the spheroid are , the maximal sizes of the double-cone along the coordinate 
axes are equal to 4 , the parameter 

4, 2ka kc= =

1ν =  and 10s = . The distance between the surfaces of the bodies is 
. Curve 1 in the figure corresponds to the standard MMDS, and curve 2 does to the modified 

algorithm considering the singularity-image on the small axis of the spheroid. The number of the 
additional sources surrounding the singularity-image is equal to 7. Note, that the full number of discrete 
sources in both cases are identical and equal to 267. It follows from the figure that the level of the residual 
obtained by the modified MMDS much less the level of the residual obtained with the use of the standard 
MMDS.  

0.1kd =

              

 Fig.1 Fig.2 
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