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Abstract 

The integral-operator equation of the pattern equation method is deduced using a method 
of the continued boundary conditions. Generally speaking the deduced equation has the 
approximate character, however it is applicable for the solution of diffraction problems at 
smaller restrictions on scatterer geometry, than the rigorous equation. Numerical 
examples are considered. 

1 Introduction 
For almost 15 years the pattern equations method (PEM) has been successfully applied to the solution of 
the broad spectrum of wave diffraction and propagation problems. However, essential limitation of the 
method is that in it’s strict formulation it is not applicable to the solution of diffraction problems on 
bodies with non analytical (in particular, piece-smooth) boundary caused by divergence of Sommerfeld-
Weil integral representation in singular points of a wave field. The method of continued boundary 
conditions (MCBC) suggested recently allows to overcome this limitation. The trick is that according to 
MCBC, the boundary condition is satisfied not on boundary S of scatterer, but on some surface Sδ, 
covering S and separated from it by some sufficiently small distance δ. It leads to the approximate 
statement of a problem, however, as a result all difficulties related to singular points of a wave field on 
scatterer boundary in case it has breaks, corners, edges, etc., as well as difficulties related to singularity of 
the corresponding integral equation kernels are removed. Computational algorithm thus becomes 
significantly simpler and practically universal. 

PEM integral-operator equation (in general approximate), which can be deduced using MCBC, is 
applicable under more general assumptions of scatterer geometry, than the exact equation of the method. 
For compactness we consider a diffraction problem on perfectly conducting scatterer. However the basic 
ideas of this approach are entirely extended to the vector problems. 

2 Derivation of PEM integral-operator equation 
It has been shown [1,2], that in framework MCBC the boundary problem can be reduced to the solution of 
Fredholm integral equation of the Ist, and IInd kind with smooth kernel. In particular, in case of perfectly 
conducting scatterer MCBC gives the following equation 
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By multiplying both parts of the Eq. (1) on exp{ ( , )cos }ik δρ θ ϕ γ , 
cos [sin sin cos( ) cos cos ]γ α θ β ϕ α θ= − + , integrating on Sδ and taking advantage of generalized 
Sommerfeld-Weil representation for function : 0G
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we obtain the following integral-operator equation of PEM relative to the scattering pattern ( , )EF α β  
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generalized scattering pattern [3].  

Generally speaking the Eq. (2) is approximate, since at its derivation it was assumed, that 
( , ) ( , )E EF Fδα β α≅ β

r

. However this equation is now applicable to the diffraction problems on bodies 
with non-analytical boundary. If boundary S is analytical the obtained equation becomes exact. It is 
interesting to note, that integral-operator equation of PEM cannot be derived from standard current 
Fredholm integral equation of a IInd kind even for bodies with analytical boundary because of the simple 
layer potential normal derivative jump. 

If scatterer is weakly non-convex [3], it is more appropriate to use the equation Eq. (2) for solving 
diffraction problem, since the corresponding computation algorithm converges quite fast [3]. However, in 
case of strongly non-convex scattere s or thin screens, the Eq. (1), which is usually solved using local 
approximation of the sought current ( )J r′ , is more suitable. 

3 Numerical examples 
The scattering pattern of plane electromagnetic wave propagating at angles 0 0ϕ = , 0 0θ =  incident on a 
circular cylinder with a radius ka=3 and height kh=10 was calculate using the Eqs. (1) and (2). Results of 
calculations have graphically coincided. The maximal number N of the spherical harmonic used at 
unknown scattering pattern approximation in the Eq. (2) has been set 15, and number of basic functions 
M, used for approximation of unknown current in the Eq. (1) was set 128. The accuracy of the results 
obtained with Eq. (1) was evaluated by the residual of the boundary condition, calculated in points 
between collocation points. This residual is shown on figure. 1.  
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Figure 1: The residual for a circular cylinder with a radius ka=3 and height kh=10. 

Thus, for bodies which geometry allows Eq. (2) for solving diffraction problem, the later is more 
suitable. However, as mentioned above, using approximation Eq. (3) for reducing Eq. (2) to algebraic 
system to solve, for example, diffraction problem on thin screen, is not acceptable. If we approximate the 
pattern ( , )EF α β  in Eq. (2) by sum 
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Eq. (2) leads to algebraic system with ill-conditioned matrix. In such situation using Eq. (1) is more 
expedient for solution boundary problem. 

Let’s consider now a diffraction problem, for which Eq. (2) is inapplicable. Solution of diffraction 
problem for plane wave at 0 0θ =  was obtained on a parabolic mirror defined as ( )2cos 2( ) f θρ θ = , 
where f is the focal length, kf=20. Figures 2 and 3 show the scattering pattern in the plane [ ]0,ϕ π=  for 

EFθ  (solid) and in the plane [ ]2,3 2ϕ π π=  for EFϕ  (dashed) and the residual of the boundary condition, 

calculated in points between collocation points, respectively, obtained at M=64, Q=1, . It can be 
seen that the solution has the acceptable accuracy.  
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Figure 2: The scattering pattern for a parabolic mirror with kf=20. 
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Figure 3: The residual for a parabolic mirror with kf=20. 

4 Conclusion 
Thus, MCBC allows the reduction of a boundary value problem not only to the integral equations with a 
smooth kernel with respect to sources density on scatterer surface, but also to equations with respect to a 
scattering pattern of a body, i.e. to a field characteristic in a long-distance zone. This gives the reason to 
think MCBC one of the most universal method for solving diffraction problems. 
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