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Abstract 

The problem of electromagnetic scattering by a system of particles is considered. Starting 
from the integral solution of the inhomogeneous wave equation, the equations for Green's 
and transition operators are derived. By expanding the free-space dyadic Green's function 
in terms of spherical wave functions, equations for determining the matrix elements of 
the dyadic transition operators for system of particles are obtained. The relations between 
the matrix elements of the dyadic transition operator and Waterman's T matrix are 
established. 

1 Introduction 
Waterman's T-matrix formalism is widely used in acoustic and electromagnetic scattering problems [1]-
[4]. For the problem of electromagnetic scattering by aggregated (composite) particles the superposition 
T-matrix approach has been developed (see, for example [2], [4]). 

Alternative methods for treating the electromagnetic scattering problem are the quantum-mechanical 
potential scattering approach [3], [5] and recently developed self consistent Green's function formalism 
[6]. In [6] it is shown that, for suitable choice of expansion functions, the matrix elements of interaction 
operator are related with Waterman's T-matrix. 

In this paper we present rigorous and systematic derivation of the superposition T-matrix approach, 
which directly follows from the inhomogeneous wave equation. Starting from the complete integral 
solution of the inhomogeneous wave equation for a time harmonic field, we obtain first the equations for 
the Green's and transition operators. Then, expressing the free space dyadic Green's function in terms of 
spherical wave functions and separating variables, we find the equation for determining the matrix 
elements of transition operator T  for a system of particles using the matrix elements of T for isolated 
particles. We show that for divergence free electric field the matrix elements of T , expressed in spherical 
wave functions, directly connected to Waterman's T matrix.  

2 Equation for particle-centered matrix elements of the dyadic transition 
operator T  

Let us consider electromagnetic scattering by a system of nonmagnetic scatterers assuming, as usual, that 
the scatterers are embedded in an infinite, homogeneous, linear, isotropic, nonmagnetic and nonabsorbing 
host medium. For this problem, it is well-known that everywhere in space the time harmonic electric field 
satisfies the inhomogeneous differential equation [2]: 
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where 0 ( )J r is a source of radiation, sourV is volume of the source of radiation, hV  and iV  are the volumes 
of the host medium and the i-th particle, respectively, ( , )im ωr  is the complex refractive index of the i-th 
particle relative to that of the host medium, m  and ( , )im ωr  are the refractive indices of the host medium 
and the i-th particle, respectively. k  and ( , )ik ωr are the wave numbers in the host medium and inside the 
i-th particle, respectively. 

The complete solution of Eq.(1) (see, for example [2]) is as follows:  
3
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where 0 ( , )G ′r r  is the free space dyadic Green’s functions, ( )U ′r  is scattering potential [3], [5]. 
Eq. (5) can be written as follows: 
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where 0( , )G r r  is dyadic Green’s function for whole system of scatterers. Introducing the transition 
operator, related with the i-th particle and transition operators, related with the i-th and j-th particles (see 
for example, [5]), one can write for 0( , )G r r : 
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Here ( , )ij i jT ′ ′′r r  is transition operator, related with particles i and  j. 
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0 ( ,  )i
i iT ′ ′′′r r  is transition operator, related with particles i [3], [5]. Let us separate variables r and i′r  ( 0r and 

j′′r  etc.) in Eqs.(7), (8) and express 0G  in terms of spherical wave functions. Then Eq.(7) can be written 
in the following form: 
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(1) ( )lm ikψ r  are scalar spherical wave functions, ( , , )i i ir ϑ ϕ are spherical coordinates of the radius-vector ir in 

the coordinate system { , , }i i ix y z  associated with the i-th particle. 
ij

lml mT ′ ′  are the matrix elements of the dyadic transition operator ( , )ij i i j jT ′ ′′+ +R R R R : 
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where ( )lm iRg kψ ′R  are scalar regular spherical wave functions. 
The matrix ij

lml mT ′ ′  is a tensor of 2-nd rank (dyad) associated with the particles i and j (the particle-
centered matrix). It contains all possible scattering processes occurring while wave propagates from the 
particle j to the particle i. The matrices ij

lml mT ′ ′  are independent of the incidence and scattering directions as 
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well as of the polarization state of the incident field. They depend only on the configuration of the system 
of particles, the properties of the component particles, their orientation, etc. 

For the matrix elements 0i
lml mT ′ ′ , associated with isolated particles, we can write similar to (12) the 

following relation:  
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Using the definitions (12), (14) and the addition theorems for scalar spherical wave functions (see, for 
example, [7]), from Eq.(8) we have the following equation for matrix ij

lml mT ′ ′ : 
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l m l mC −  are Clebsh-Gordan coefficients [7]. 

2 Relation between Waterman's T matrix and the matrix elements of the 
dyad transition operator T  

Eq.(9) for Green's function and Eqs.(12),(14)-(16) for the matrix elements of the transition operators 
are obtained for the following conditions: the Green's function must satisfy vector wave equation and 
must be limited at infinity. Thus 0 0( , )G r r  and 0( , )G r r are not divergence free and contain both transverse 
and longitudinal parts. For the system of uncharged particles electromagnetic field outside of source 
region is purely transverse. Thus in Eq.(9) and Eqs.(12), (14)-(16) one has left just the divergence free 
transverse part of 0 0( , )G r r and 0( , )G r r . For the transverse part of Green's function from Eq.(9) we can 
write following equation: 
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In Eqs.(19)-(22) the dyadic transition operator T  for the system of particles is defined by Eq.(8) whereas 
for isolated particles it is the transition operator related with a particle [5]. ( )lm kM r , ( )lm kN r  are vector 
spherical wave functions [2]. In (19)-(22) the matrix elements 1

1 1

ll
LML MT  ( , 1l L L= ± ) are related with 

cyclical components 1

1 1

qq
lml mT  ( q  and 1q  take values 0, 1± )) of 

1 1lml mT  (see Eq.(12), Eq.(14)) by the equations: 
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From Eqs.(5), (6), (18) one can obtain the expansions for scattered and incident fields: 
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where scattering coefficients are related with expansion coefficients of incident field through the matrix 
elements (19)-(22) 
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Thus the matrix elements of transition operator, which are defined by the relations (19)-(22), are the 
elements of Waterman's T matrix and the matrix elements of T  defined by the relations (12), (14) are 
related with Waterman's T matrix by relations (19)-(22) and (23). Consequently, for the elements of T 
matrix we have a similar to (15) equation, that allows calculating the T matrix for system of particles 
using T matrices for individual particles of the system. 

3 Conclusion 

In this paper the matrix elements of T  we expressed in terms of spherical wave functions. As a result, 
Eq.(15) for the particle-centered T matrices ( ijT ) is obtained for the condition: the smallest spheres 
circumscribing particles must not overlap with each other. These restrictions are known in the 
superposition T-matrix approach as well [2]. But the expression in terms of spherical wave functions is 
not the only possible one. For example, other possible expressions are the expressions in terms of 
spheroidal or cylindrical wave functions. Being expressed in terms of such function the T matrices for the 
cluster of particles must satisfy the following condition: the smallest spheroids (smallest cylinders) 
circumscribing particles must not overlap with each other. Note that independently of the chosen 
expansion functions, Eq.(15) for ijT  in the matrix form must be the same, since they are the consequence 
of more general equations (8) for operators. The key condition is that in the chosen function basis, one 
could separate variables for the Green's function. 
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