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Abstract 

We derive the Mueller matrix for single scattering from inhomogeneous medium 
characterized by simultaneous linear and circular birefringence. Simulations for 

maxmin II  showed a simple dependence on wavelength of incident radiation.�

1 Introduction 
The Mueller matrix is a rich source of information about the properties of media investigated in a wide 
variety of disciplines [1-3].  And unique experimental methods are being rapidly developed to measure 
the matrix. The challenge is to interpret the measured Mueller matrix, and relate the matrix elements to 
observable phenomena. A polarization model for anisotropic media aids in these interpretations. 
 
Mueller matrices for homogeneous anisotropic media are well known [4]. There are four basic 
anisotropies characterizing the homogeneous anisotropy of deterministic media: linear and circular 
dichroism, and linear and circular birefringence. Inhomogeneous media can depolarize the incident 
radiation, and, therefore, can not be directly described in terms of these four basic anisotropy properties. 
In [5], we derived and analyzed the Mueller matrix model for the rough plate parallel slab with linear 
birefringence. The main goal this paper is to derive the single scatter Mueller matrix model for an 
inhomogeneous medium with simultaneous linear and circular birefringence.  

 

2 Theory 
The geometry of the problem is given in Fig. 1. The object under discussion is a slab of anisotropic 
medium located in the 0=z plane. Inhomogeneity of the slab is specified by variation of its thickness 
( )ρh  which sets the conditions for single scattering; ( )ρh  is assumed to follow a known statistical model 

– a uniform Gaussian process:  
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with mean thickness h , mean-square deviation hσ , and correlation coefficient between screen thickness 
at two points given by: 

 ( ) ( ) ( )












ρ
−=

σ
⋅

=γ −
− 2

0

2

2
21 exp ρρρρ

h
h

hh
,     (2) 

where, the distance between points is given by: 12 ρρρ −=− .  The correlation radius is 0ρ . 
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Fig. 1. Geometry for anistropic medium. 

Anisotropy of the medium is given by its polarization eigen states, and the corresponding eigen values. 
Interaction of radiation with such medium is described by its Jones matrix written in eigen coordinate  
system ( )UOV  by: 
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Where, vug ,  are the corresponding eigen values which are the complex transmittance coefficients of 
radiation in eigen polarization states.  
 
We will consider the case when fast eigen polarization of the studied object is associated with basis vector 
OU . We assume that field distribution of incident radiation to be Gaussian in the plane normal to its 
propagation direction, with the center of the beam located in the 0=z  plane: 

( ) { }22exp ainin ρEρE −= ,     (4) 
Here, inE  denotes Jones vector in the center of the beam; a  is the beam's radius. It has been shown in 
[5], that the Mueller matrix in the eigen coordinate system in the far field limit is (refer to [5] for 
definition of variables): 

( )
( ) 






















Φ+ΦΦ−Φ−

Φ−ΦΦ+Φ

Φ+ΦΦ−Φ

Φ−ΦΦ+Φ

=

21122112

21122112

22112211

22112211

00

00

00

00

i

i
eigenM ,  (5) 

where:   
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In the general case, the Jones matrix in the laboratory coordinate system can be presented as:  

∑
=

−− =










+











=

2

1

1
2

1
1

lab

10

00

00

01

u

u
uggg βBBBBJ ,   (6) 

where, 1

2,

1,

0
0 −








= BBβ

u

uu

δ
δ

. 

If eigenvectors 1χ  and 2χ , ( 12 EE=χ ) are known, then the transformation matrix B  is:  
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The Jones (as well as Mueller-Jones) matrix model of homogeneous anisotropic medium characterized by 
simultaneous linear and circular birefringence is defined by the first Jones’ equivalence theorem [6,7]: 
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Then, the medium’s eigenvectors [ ]T2,11 χ  can be calculated as: 
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and matrices uβ  from Eq.(6) are:  



















η
ξ

+
ηκ
η−ξ

η
κ

−
η
ξ

−
=



















η
ξ

−
ηκ
ξ−η

η
κ

η
ξ

+
=

1

1

2
1;

1

1

2
1

22
2

22
1 ββ .   (11) 

And finally, from Eqs.(5) and (6) after some algebra, the Mueller matrix model, in the laboratory 
reference, for the inhomogeneous medium with generalized birefringence in single scattering case for 
large inhomogeneities given by ( )[ ]λ−π>σ −1

2127 nnh  [5], is: 
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3 Discussions  
As can be seen from Eq.(12), the matrix M  is singular i.e., M  exhibits dependence of output intensity 
on input polarization. From the fact that matrix M  is non-deterministic, there are no input polarizations 
for which the intensity of output radiation is equal to zero. Maximum and minimum values of output 
intensities are obtained for input radiation with polarizations describing by the following Stokes vectors 
respectively: 

( ) ( )[ ]Tκ±κ±ξ±κ+ξ= ImRe22minmax,S .    (13) 
The ratio of minimum and maximum output intensities is therefore: 
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Figure 1. Dependence of ratio maxmin II versus 
wavelength for 2TeO  

Figure 1 presents the results of simulations 
performed to study the dependence of ratio 

maxmin II  versus wavelength from 4.0  to mµ0.1 . 
The data for refractive indices for this simulation 
was taken from [8] for paratellurite 2TeO .  
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