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BACKGROUND 

Because structures can significantly change the radiative properties of surfaces, the application of 
periodic structures is of great interest in electrodynamics, optics, and thermal engineering. A good 
example is frequency-selective surface or wavelength-selective surface, which is typically built with 
layers of materials in periodic patterns, either in one or two dimensions.  
 
As the number of periodic replicas grows, the simulation over the whole system becomes 
impractical. An intuitive solution is to model only one period of unit instead of the whole 
computation domain, and then apply periodic boundary condition (PBC) to simulate the periodic 
effect. However, there are fundamental difficulties in applying the periodic boundary condition in 
the time domain. Current techniques used to simulate periodic boundary conditions can be divided 
into two categories: field-transformation methods and direct field methods. These methods all have 
drawbacks. 
 

PHASE DIFFERENCE AT THE PERIODIC BOUNDARIES 
The following figure is presented to demonstrate scattering at the periodic boundary and test the 
new technique for PBC simulation. In this problem, the computation domain is topped and 
bottomed by two PML layers, and a planar source wave is projected towards a dielectric medium 
from the scattering field/total field interface. The whole system is enclosed by left and right periodic 
boundaries, with a distance l. The critical problem is to address the phase shift Φ from the left 
boundary to the right boundary. The phase shift Φ = −kxl, where kx = − ksinθ and k = ω/c. θ is the 
incident angle, ω is the angular frequency, and c is the light speed in a vacuum. The corresponding 
time shift is ζ = Φ/ω. 
 
Figure 1(a) shows the general 3D space discretization used in Yee algorithm [3]. Figure 1(b) 
illustrates a periodic boundary condition simulation of a 2D transverse electric (TE) polarization 
case and nx denotes the number of grids in x-direction. If Δx is the grid size in x-direction, then 
period length L = nx.Δx = l+Δx/2. In Fig. 1(b), the left and right solid lines denote the physical 
computation boundaries, while the dash lines stand for virtual boundaries which are needed to 
complete the time advance at the physical computation boundaries. The left virtual boundary is a 
period L away from the right physical boundary, as are the left physical boundary and right virtual 
boundary. As demonstrated in Fig. 1(b), only one field component is needed on each side, i.e., Hy(nx, 
j) on the right physical boundary is needed to simulate the periodic component Hy(0, j) on the left 
virtual boundary so that Ez(1, j) on the left physical boundary can be updated at the next time step.  
 

TIME DOMAIN TO FREQUENCY DOMAIN TRANSFORMATION 
As mentioned above, the adaption of field component from one physical periodic boundary to its 
opposite virtual boundary is required to complete the simulation of PBC scattering (e.g., utilizing 
the information of Hy(nx, j) at Hy(0, j) and the information of Ez(1, j) at Ez(nx+1, j) as shown in Fig. 
2(b)). The fundamental electromagnetics theorems indicate that electromagnetic energy propagates 
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 (a) Yee's FDTD grid. (b) 2D periodic boundary grid. 

Figure 1. The FDTD grids at the interior and boundaries. 
 

as a wave. For example, electric field has the form of Eoej(ω t+Φ ), i.e., a function of amplitude Eo and 
phase Φ. Thus, a phase shift of Φ can be handled easily by multiplying ejΦ, without the need to 
allocate memory for additional grids. Obviously the frequency domain methods have advantages 
over time domain methods in terms of computation load and grid mesh storage. However, the 
FDTD algorithms are time domain simulation: thus, the transformation between time domain and 
frequency domain is necessary. 
 
Instantaneous Transformation Technique 
A novel instantaneous transformation technique has been developed to solve the problem. The 
following phasor diagram illustrates the essence of this technique. As shown in Fig. 2, the vector 
OA stands for the known 1E~ −n  phasor field at time step n-1. The vector OB stands for the 
anticipated phasor field at next time step, and we have, 
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According to the Yee algorithm, the real value of an electric field at time step n can be updated with 
the magnetic field at a prior half time step, n-1/2: and the update of the components lying inside a 
periodic boundary can be achieved by using the magnetic field on its neighboring virtual boundary 
– for example, in Fig. 1(b) the update of Ez(1, j) can be realized with Hy(0, j), which is equal to 
Re{Hy(n, j)e-jΦ }. Thus, the computational real value of an electric field on the physical boundary at 
time step n is achieved, defined as En. As Fig. 2 shows, there is a difference between the real part of 

*E~ n  and En, and the difference is given by { }*
nn E~ReE −=Δ . Thus, with the aid of Fig. 2, O'C is the 

phasor field at time step n, where O' is the new origin on the imaginary axis. Since ωΔt << 1, the 
phasor field at the current time step can be written as 
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As previously mentioned, directly using the intercept of the perpendicular bisector may result in 
stability issues, since the perpendicular bisector may be parallel to the imaginary axis. Equation (2) 
does not have this problem. When β approaches zero, the last term on the right hand side of Eq. (2) 
will automatically approach zero. Equation (2) can be modified so that the transformed phasor field 
will gradually approach to the driving wave. To achieve this, Eq. (2) was modified to 
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where M is a damping factor and the magnitude is greater than 1. Figure 3 shows the simulation of 
transformations in using Eq. (3), with incoming wave En = 1.sin(n.1o) + 0.01.sin(n.100o), and the 
second phasor field nH~  being driven by { }8/E~Re πj

ne . The dash curve stands for nE~ , and the 
solid curve stands for nH~ . As shown in Fig. 3, M leads to stability issue when it is a small number; 
however, when M is a large number, it will take longer time or more cycles to converge to a stable 
result. 

 
 (a) (b) 

Figure 2. Complex phasor representation of E fields at different time steps. 
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Figure 3. Phasor diagram based on Eq. (3). 
 

CONCLUSIONS 
Overall, the new technique can successfully treat the periodic boundary condition in the 
computational electrodynamics or any phase-dependent wave-propagation problem. The new 
method utilizes the given information (frequency of light source), instead of sampling a time period 
of signal to obtain the information as in the Fourier transform. Since the new transformation 
technique can instantly transform signal into phasor field, the method may have wide applications in 
dynamic system control and signal processing. 
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